3D printed Titanium alloys under an electron microscope: sample on the left with large, elongated crystals was printed conventionally, while sample on the right with finer, shorter crystals was printed sitting on a ultrasonic generator. Credit: RMIT University A study just published in Nature Communications on January 9, 2020, shows high-frequency sound waves can have a significant impact on the inner micro-structure of 3D printed alloys, making them more consistent and stronger than those printed conventionally. Lead author and Ph.D. candidate from RMIT University’s School of Engineering, Carmelo Todaro, said the promising results could inspire new forms of additive manufacturing. “If you look at the microscopic structure of 3D printed alloys, they’re often made up of large and elongated crystals,” Todaro explained. “This can make them less acceptable for engineering applications due to their lower mechanical performance and increased tendency to crack during printing.” Carmelo Todaro and Ma Qian inspect a 3D printed Titanium alloy cube on the tip of an ultrasound rod. Credit: RMIT University “But the microscopic structure of the alloys we applied ultrasound to during printing...